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Abstract

A method has been investigated for the accurate determination of the total number of
propagating modes, the electromagnetic field patterns and the power density distribution

in a transversely magnetized,

ferrite loaded rectangular waveguide.

The established criterion is valid for any ferrite material thickness and gives
more complete results than the first method developped by Gardiol et al.

Introduction

Waveguides loaded with slabs, ridges or
rods of magnetized ferrites, semiconductors,
dielectrics and/or absorbing materials have
found numerous uses in the development of
microwave devices. For practical reasons,
only the frequency range over which a single
mode can propagate is usable, in order to
avoid the attenuation and mismatch spikes
(moding) due to the occurrence of propagating
higher-order modes. Therefore, a certain
knowledge of the propagation characteristics
of all the modes which can exist in a given
structure is necessary to the designer. The
first higher-order mode, i.e. the mode having
the second lowest cutoff frequency sets the
upper bound to the frequency band that can
safely be used in actual operation (unless
suitable precautions are taken to prevent
excitation of this mode).

Higher-order mode characteristics are
difficult to determine experimentally, due to
the presence of the propagating dominant
mode. Extrapolation from the empty waveguide
is often misleading; in rectangular waveguides
for instance, the assumption that the first
higher-order mode is the TEj(p mode, which is
the case in the empty waveguide, was shown
to be quite erroneous in most cases when slabs
of dielectric are introduced in the guidel.

It becomes, therefore, necessary to determine
theoretically the propagation characteristics
of the structure. In some cases, an exact
analytical solution can be obtained 2-3

while for other structures, only approxima-
tions are available, such as the Rayleigh-
Ritz method4
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Position Problem

A feature which is common to most of these
methods is that they lead to a characteristic
or determinantal equation. The propagation
coefficient is obtained by solving an equa-
tion having the general form :

(1)

f(x) =0, o+ j.p

¥
This equation is the determinant of the
boundary-value equations in exact analytical
methods; in this case, the function is trans-
cendental, involving trigonometric functions
in rectangular waveguides, Bessel functions
in circular, Mathieu functions in elliptical,
etc... For the Rayleigh-Ritz approximation,
the function is given by the determinant of
a set of linear equations and could thus be
solved exactly. However, since a large number
of terms of the expansion must be taken to
yield adequate accuracy a complete solution
would be quite time-consuming and unnecessa-
ry. When suitable precautions are taken
during the derivation of (1), the function
F (y) is analytical; its zeros located at
the points ¥k in the complex ¥ plane corres-
ponding to the modes of the structure.
Dividing by any function which has zeros in
the y plane (for simplification reasons) is
not allowed as it would introduce singulari-
tiesl. For a lossless system, the zeros
corresponding to propagating modes are all
located on the imaginary axis of the y plane.
This is no longer true for lossy structures,
for which the Yk are always complex numbers.
The meaning of cutoff is then less definite :
for instance, a mode can be considered cutoff
when o) p and propagating when o < p
the cutoff condition corresponding then to
the line Re(y?) = O i.e the imaginary
axis in the plane (other definitions of
cutoff corresponding to other contours in the
62 or 6 plane can also be chosen).



Research of the zeros

The number of modes that can propagate
is then given by the number of zeros of

f (X ) located within a specified area. For
the cutoff condition indicated above, this
area covers the left-hand half plane. If the

structure does not support backward waves,

the area can be further limited to the top

half of this half-plane (Re(x2)< 0,hn(¥2)>0 )

The number N of zeros of the analytical func-

tion £ () ) located within the contour C

in the complex ¥ plane (or the complex

plane) is given by the following relation,

provided no zero is located directly on the
'y dy

contour C
Sé f(y)

wherethe prime denotes differentiation with
respect to gy and the clockwise direction is
taken along the contour C. The evaluation

of this integral would be rather time consu-
ming; the same information can however be
obtained by considering the phase of the
function £ (j) along the contour, as can be
seen by developing (2) :

gSIKdeX
c fy

N=_1_
21

(2)

= Log f(x)‘c = Log lf(x)

)
C (Plc

= 27LjN (3)

On the contour C, the phase of the function

f (y) will go through N jumps of 27
Counting the number of jumps allows therefore
to determine the number of zeros located
within the contour. Since it is impractical
to have a contour extending to infinity, a
square contour is chosen within the 52 plane,
delimited by the real and imaginary axes and
by parallels to both axes (Fig. 1). This
sqgquare must be wide enough to contain the
zero of the dominant mode. (This can be done
by finding a lower bound).

The phase @ defined in the interval

- £ £ ® is then computed
for a number of points located around the
contour. N is then equal to the number of
jumps from ~Tt to + ¢ minus the number
of jumps from +TC to -1 6,7 (clockwise
direction along the contour C).

Knowing the number of roots within the
area delimited by the contour C, their exact
location can be determined by means of the
search method described in (Fig. 2).
starting points for this search process are
the points on the contour where jumps of the
phase occur.

Suitable
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Conclusion

The developped method allows to determine
theoretically the existence of higher-order
modes in anisotropic slab-loaded waveguides.

When the propagation constants are known
it is possible to calculate simply the elec-
tromagnetic field patterns and the power
density distribution in the devices. These
distributions will allow to determine the
mode excitation probabilities and the high
fields regions which limit the use of such
devices in very high power.
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