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Abstract

A method has been investigated for the accurate determination of the total number of

propagating modes, the electromagnetic field patterns and the power density distribution
in a transversely magnetized, ferrite loaded rectangular waveguide.

The established criterion is valid for any ferrite material thickness and gives
more complete results than the first method developed by Gardiol et al.

Introduction

Waveguides loaded with slabs, ridges or

rods of magnetized ferritesr semiconductors,

dielectrics and/or absorbing materials have

found numerous uses in the development of

microwave devices. For practical reasons,

only the frequency range over which a single
mode can propagate is usable, in order to
avoid the attenuation and mismatch spikes
(moding) due to the occurrence of propagating

higher-order modes. Therefore, a certain
knowledge of the propagation characteristics
of all the modes which can exist in a given
structure is necessary to the designer. The
first higher-order mode, i.e. the mode having
the second lowest cutoff frequency sets the
upper bound to the frequency band that can
safely be used in actual operation (unless
suitable precautions are taken to prevent
excitation of this mode) .

Higher-order mode characteristics are
difficult to determine experimentally, due to
the presence of the propagating dominant
mode. Extrapolation from the empty waveguide
is often misleading; in rectangular waveguides
for instance, the assumption that the first
higher-order mode is the TE20 mode, which is
the case in the empty waveguide, was shown
to be quite erroneous in most cases when slabs
of dielectric are introduced in the guidel.
It becomes, therefore, necessary to determine
theoretically the propagation characteristics
of the structure. In some cases, an ~x~ct
analytical solution can be obtained -
while for other structures, only approxima-
tions are available, such as the Rayleigh-
Ritz method4
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Position Problem

A feature which is common to most of these
methods is that they lead to a characte:
or determinantal equation. The propagat
coefficient is obtained by solving an
tion having the general ’form :

f(y)=o # ~=c4+j.p

istic
on
equa-

(1)

This equation is the determinant of the
bounda~y-value equations in exact analytical
methods; in this case, the function is trans-
cendental, involving trigonometric functions
in rectangular waveguidesr Bessel functions
in circular, Mathieu functions in elliptical,
etc... For the Rayleigh-Ritz approximation,
the function is given by the determinant of
a set of linear equations and could thus be
solved exactly. However, since a large number
of terms of the expansion must be taken to
yield adequate accuracy 5 a complete solution
would be quite time-consuming and unnecessa-
ry. when suitable precautions are taken
during the derivation of (1) , the function
F(d) is analytical; its zeros located at
the points ~k in the complex ~ plane corres-
ponding to the modes of the structure.
Dividing by any function which has zeros in
the ~ plane (for simplification reasons) is
not allowed as it would introduce singulari-
ties . For a lossless system, the zeros
corresponding to propagating modes are all
located on the imaginary axis of the ~ plane.
This is no longer true for 10SSY structures,
for which the ~k are always complex numbers.
The meaning of cutoff is then less definite :
for instance, a mode can be considered cutoff
when ~>p and propagating when @<p
the cutoff condition corresponding then to
the line Re(y2) = O i.e the imaginary
axis in the ~2 plane (other definitions of

cutoff corresponding to other contours in the

8
2 or ~ plane can also be chosen).
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Research of the zeros -— . —,

The number of modes that can propagate
is then given by the number of zeros of
f (~ ) located within a specified area. For

the cutoff condition indicated above, this
area covers the left-hand half plane. If the
structure does not support backward waves,
the area can be further limited to the top
half of this half-plane (Re(x2)<o,lm(f)>() )
The number N of zeros of the analytical func-
tion f ( ~ ) located within the contour C
in the complex ~ plane (or the complex 12
plane) is given by the following relation,
provided no zero is located directly on the
contour C

~oncluslon

The developed method allows to determine
theoretically the existence of higher-order
modes in anisotropic slab-loaded waveguides.

When the propagation constants are known
it is possible to calculate simply the elec-
tromagnetic field patterns and the power
density distribution in the devices. These
distributions will allow to determine the
mode excitation probabilities and the high
fields regions which limit the use of such
devices in very high power.

(2)

where the prime denotes differentiation with
respect to ~ and the clockwise direction is
taken along the contour C. The evaluation
of this integral would be rather time consu-
ming; the same information can however be
obtained by considering the phase of the
function f ( ~ ) along the contour, as can be
seen by developing (2) :

(3)

On the contour C, the phase of the function
f (~ ) will go through N jumps of 2X
Counting the number of jumps allows therefore
to determine the number of zeros located
within the contour. Since it is impractical
to have a contour extending to infinity, a
square contour is chosen within the ~2 Plane/
delimited by the real and imaginary axes and
by parallels to both axes (Fig. 1). This
square must be wide enough to contain the
zero of the dominant mode. (This can be done
by finding a lower bound) .

The phase ~ defined in the interval
-n< q < ~ is then computed

for a number of points located around the
contour. N is then equal to the number of
jumps from -’R to +?7 minus the number
of jumps from +~ to -~ 6,7 (clockwise
direction along the contour C) .

Knowing the number of roots within the
area delimited by the contour C, their exact
location can be determined by means of the
search method described in 2 (Fig. 2) . Suitable
starting points for this search process are
the points on the contour where jumps of the
phase occur.
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Fig 1, %uiphase Lines of f(y) .
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Fig 2, Research for one zero of f(y)-

76


